リソース
戻る
注目のお客様

Domo の自動データフローエンジンを使用すれば、ゲームの視聴者数を予測する際にかかる手動プロセスを数百時間短縮できました。

ビデオを見る
会社情報
戻る
アワード
のリーダーとして認められた
29 四半期連続
2025年春組込み BI、分析プラットフォーム、ビジネスインテリジェンス、ELT ツールのリーダー
価格
report
No items found.

Heading

This is some text inside of a div block.
No items found.
report
No items found.

Heading

This is some text inside of a div block.
No items found.

Leveraging Graphs for Data Preparation and Feature Engineering for Domo AutoML

Friday, April 2, 2021
Try Domo for yourself.
Try free

The process of preparing data for use in predictive models is often a significant barrier to successful deployment. Richer, more informative datasets tend to be more complex, making the engineering of features from the raw data cumbersome and opaque to business stakeholders. A novel solution is the use of a flexible database in the background that can accommodate complex relationships within the data while also allowing for transparent feature engineering. In this discussion, we hope to demystify feature engineering and data preparation for data science efforts while also demonstrating how a graph database can make model building more efficient and more transparent to business stakeholders.In this session you'll learn how to:

  • Ingest complex relational tables into a graph database
  • Leverage graphs for transparent data manipulation and feature engineering for machine learning
  • Convert data science into a business-friendly process using Domo AutoML
  • See the benefits of Domo’s “polyglot” data ingestion capabilities using connectors
Speakers

Dr. Lee Hong, Director of Data Science, GraphableRebecca Rabb, Consultant, Graphable

No items found.

Related Resources

Explore all

Domo transforms the way these companies manage business.